metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A second C-centred monoclinic modification of racemic potassium hydrogen malate monohydrate

Guang-Chuan Ou^a and Seik Weng Ng^b*

^aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425100, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 21 June 2007; accepted 23 June 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.008 Å; R factor = 0.034; wR factor = 0.124; data-to-parameter ratio = 8.8.

The K⁺ cation in the racemic title compound, poly[aqua- μ_6 malato-potassium(I)], [K(C₄H₅O₅)(H₂O)]_n, exists in an irregular eight-coordinate environment. The anions are linked through hydrogen bonds into a three-dimensional network. The coordination environment differs from the six-coordinate environment reported in another C-centred monoclinic modification [Geise, van Loock & Lenstra (1983). Acta Cryst. C39, 69–70].

Related literature

For the first C-centred monoclinic modification, see: Geise et al. (1983).

Experimental

Crystal data [K(C₄H₅O₅)(H₂O)] $M_r = 190.20$ Monoclinic, Cc a = 10.534 (1) Å b = 10.494 (1) Å c = 7.5640 (8) Å $\beta = 120.801 \ (1)^{\circ}$

 $V = 718.19 (13) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.72 \text{ mm}^{-1}$ T = 291 (2) K $0.42 \times 0.21 \times 0.15 \text{ mm}$

Data collection

```
Bruker APEX area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.717, \ T_{\max} = 0.900
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.124$	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
S = 1.19	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
876 reflections	Absolute structure: Flack (1983),
100 parameters	with 82 Friedel pairs
2 restraints	Flack parameter: $-0.1(1)$

1561 measured reflections

 $R_{\rm int} = 0.014$

876 independent reflections

839 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

K1-01	2.972 (4)	$K1 - O4^{iv}$	2.671 (4)
$K1-O2^{i}$	2.858 (4)	K1-O4 ⁱⁱⁱ	2.740 (4)
$K1 - O2^{ii}$	2.689 (4)	$K1 - O5^{v}$	2.876 (4)
K1–O3 ⁱⁱⁱ	3.094 (4)	K1-O6	3.038 (5)

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) $x, -y + 1, z + \frac{1}{2}$; (iv) $x, y, z + 1; (v) x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}.$

Table 2

Hydrogen-bond geometry (A, *)
------------------------------	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···O6 ^{vi}	0.82	2.13	2.607 (5)	117
$O5-H5\cdots O1^{vii}$	0.82	1.70	2.491 (5)	160
O6−H61···O1 ^{viii}	0.82	2.34	2.831 (6)	119
O6−H62···O3	0.82	2.27	2.815 (6)	124

Symmetry codes: (vi) $x, -y + 1, z - \frac{1}{2}$; (vii) x, y, z - 1; (viii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

(i)

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank Hunan University of Science and Engineering, China, and the University of Malaya for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2280).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2004). SMART (Version 6.36a) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Geise, H. J., Van Loock, J. F. J. & Lenstra, A. T. H. (1983). Acta Cryst. C39, 69-70
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, m2004 [doi:10.1107/S1600536807030619]

A second C-centred monoclinic modification of racemic potassium hydrogen malate monohydrate

G.-C. Ou and S. W. Ng

Comment

In the previous C-centered monoclinic modification of racemic potassium hydrogen malate hydrate (Geize *et al.*, 1983), the potassium atom is in an octahedron of oxygen atoms, and for the carboxylate anion the ionized and un-ionized groups cannot be distinguished. In the present C-centered monoclinic modification, the potassium atom exists in an irregular, eight-co-ordinate environment (Table 1). The anion features unambiguous ionized and un-ionized groups; interestingly, the double-bond oxygen atom of the ionized group is the oxygen atom that is closest to potassium despite being involved in another briding interaction.

Experimental

DL-Malic acid (27 mg, 0.2 mmol) was mixed with potassium hydroxide (12 mg, 0.2 mmol) in water (10 ml) to give a blue solution. Slow evaporation of the solution gave colorless prismatic crystals.

Refinement

Carbon- and oxygen-bound H atoms were positioned geometrically (C-H 0.97 – 0.97, O-H 0.82 Å), and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 or $1.5U_{eq}(C,O)$.

The Flack parameter was refined from 82 Friedel pairs.

Figures

Fig. 1. **Figure 1**. Thermal ellipsoid plot of potassium hydrogen malate hydrate; displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms as spheres of arbitrary radius. [Symmetry codes are given in Table 1.]

poly[aqua-µ6-malato-potassium(I)]

Crystal data [K(C₄H₅O₅)(H₂O)] $M_r = 190.20$ Monoclinic, Cc Hall symbol: C -2yc a = 10.534 (1) Å

 $F_{000} = 392$ $D_x = 1.759 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1338 reflections $\theta = 3.0-27.0^{\circ}$

<i>b</i> = 10.494 (1) Å
c = 7.5640 (8) Å
$\beta = 120.801 \ (1)^{\circ}$
$V = 718.19 (13) \text{ Å}^3$
Z = 4

Data collection

Bruker APEX area-detector diffractometer	876 independent reflections
Radiation source: fine-focus sealed tube	839 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.014$
T = 291(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 10$
$T_{\min} = 0.717, \ T_{\max} = 0.900$	$k = -13 \rightarrow 11$
1561 measured reflections	$l = -3 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.0732P)^2 + 2.0212P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.124$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.19	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
876 reflections	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
100 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), 82 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.1 (1)

 $\mu = 0.72 \text{ mm}^{-1}$ T = 291 (2) K Prism, colorless

 $0.42 \times 0.21 \times 0.15 \text{ mm}$

Secondary atom site location: difference Fourier map

											. 2	
Fractional	atomic	coordinates	and i	isotronic (or ea	uivalent	isotronic	disnl	acement	narameters	$(\AA^2$)
i i actionat	anomne	coordinates		ison opie e	n eg	<i>un nanche</i>	isonopie	anspit	accincin	parameters	(11)	/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
K1	0.50000 (12)	0.56252 (10)	0.50000 (14)	0.0192 (3)
01	0.6110 (4)	0.8267 (4)	0.5299 (6)	0.0203 (8)
O2	0.8346 (4)	0.8883 (4)	0.5947 (6)	0.0203 (8)
O3	0.7334 (4)	0.6285 (3)	0.3048 (6)	0.0202 (8)
H3	0.8143	0.5933	0.3621	0.030*
O4	0.6024 (4)	0.6425 (4)	-0.1149 (6)	0.0214 (8)
05	0.7244 (4)	0.8251 (3)	-0.0892 (6)	0.0212 (8)
Н5	0.6844	0.8079	-0.2120	0.032*
O6	0.8351 (5)	0.5749 (4)	0.7211 (7)	0.0273 (9)
H61	0.8632	0.6450	0.7751	0.041*

supplementary materials

Н62	0.8621	0.5636	0.6381	0.041*
C1	0.7049 (6)	0.8543 (5)	0.4753 (8)	0.0158 (10)
C2	0.6503 (6)	0.8418 (5)	0.2466 (8)	0.0163 (10)
H2A	0.6570	0.9236	0.1921	0.020*
H2B	0.5477	0.8151	0.1729	0.020*
C3	0.7450 (6)	0.7435 (5)	0.2164 (7)	0.0163 (11)
H3A	0.8482	0.7717	0.2860	0.020*
C4	0.6835 (6)	0.7304 (5)	-0.0148 (8)	0.0153 (10)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	0.0231 (5)	0.0221 (5)	0.0108 (5)	0.0012 (5)	0.0076 (4)	-0.0016 (5)
01	0.0222 (18)	0.0286 (19)	0.0117 (18)	0.0017 (16)	0.0098 (16)	0.0009 (15)
02	0.0234 (19)	0.0249 (18)	0.0124 (18)	-0.0062 (16)	0.0092 (16)	-0.0031 (16)
03	0.027 (2)	0.0168 (16)	0.017 (2)	0.0058 (15)	0.0117 (17)	0.0033 (14)
O4	0.0211 (19)	0.0282 (19)	0.0129 (18)	-0.0082 (16)	0.0072 (16)	-0.0055 (15)
05	0.026 (2)	0.0260 (19)	0.0121 (17)	-0.0078 (16)	0.0097 (16)	-0.0032 (15)
06	0.030 (2)	0.032 (2)	0.022 (2)	-0.0099 (19)	0.0149 (18)	-0.0025 (18)
C1	0.024 (3)	0.009 (2)	0.014 (3)	0.0053 (18)	0.009 (2)	0.0013 (17)
C2	0.017 (2)	0.020 (2)	0.010 (2)	0.003 (2)	0.006 (2)	0.0007 (19)
C3	0.015 (2)	0.025 (2)	0.009 (3)	-0.0009 (19)	0.007 (2)	0.000 (2)
C4	0.019 (2)	0.017 (2)	0.014 (2)	0.0032 (19)	0.011 (2)	0.0000 (18)

Geometric parameters (Å, °)

K1—O1	2.972 (4)	O4—C4	1.222 (6)
K1—O2 ⁱ	2.858 (4)	O4—K1 ^{ix}	2.671 (4)
K1—O2 ⁱⁱ	2.689 (4)	O4—K1 ^{viii}	2.740 (4)
K1—O3 ⁱⁱⁱ	3.094 (4)	O5—C4	1.318 (6)
K1—O4 ^{iv}	2.671 (4)	O5—K1 ^x	2.876 (4)
K1—O4 ⁱⁱⁱ	2.740 (4)	O5—H5	0.8200
K1—O5 ^v	2.876 (4)	O6—H61	0.8200
K1—O6	3.038 (5)	O6—H62	0.8200
O1—C1	1.285 (7)	C1—C2	1.524 (7)
O2—C1	1.243 (6)	C2—C3	1.531 (7)
O2—K1 ^{vi}	2.689 (4)	C2—H2A	0.9700
O2—K1 ^{vii}	2.858 (4)	C2—H2B	0.9700
O3—C3	1.415 (7)	C3—C4	1.529 (6)
O3—K1 ^{viii}	3.094 (4)	С3—НЗА	0.9800
O3—H3	0.8200		
04 ^{iv} —K1—O2 ⁱⁱ	147.89 (13)	K1 ^{vi} —O2—K1 ^{vii}	92.34 (12)
O4 ^{iv} —K1—O4 ⁱⁱⁱ	126.01 (15)	C3—O3—K1 ^{viii}	115.4 (3)
O2 ⁱⁱ —K1—O4 ⁱⁱⁱ	85.38 (12)	С3—О3—Н3	108.4
04^{iv} —K1— 02^{i}	83.42 (12)	K1 ^{viii} —O3—H3	108.4
$O2^{ii}$ —K1— $O2^{i}$	106.65 (14)	C4—O4—K1 ^{ix}	132.6 (3)

supplementary materials

$O4^{iii}$ —K1— $O2^{i}$	88.08 (13)	C4—O4—K1 ^{viii}	131.3 (4)
O4 ^{iv} —K1—O5 ^v	85.55 (12)	K1 ^{ix} —O4—K1 ^{viii}	95.41 (12)
$O2^{ii}$ —K1— $O5^{v}$	70.55 (11)	C4—O5—K1 ^x	136.1 (3)
$O4^{iii}$ —K1— $O5^{v}$	139.62 (12)	C4—O5—H5	103.1
$O2^{i}$ —K1— $O5^{v}$	69.48 (12)	K1 ^x —O5—H5	103.1
O4 ^{iv} —K1—O1	72.57 (11)	K1—O6—H61	109.5
O2 ⁱⁱ —K1—O1	84.69 (12)	K1—O6—H62	109.5
O4 ⁱⁱⁱ —K1—O1	123.58 (12)	Н61—О6—Н62	109.5
O2 ⁱ —K1—O1	147.59 (12)	O2—C1—O1	124.9 (5)
O5 ^v —K1—O1	86.90 (11)	O2—C1—C2	119.0 (5)
O4 ^{iv} —K1—O6	71.32 (12)	O1—C1—C2	116.1 (5)
O2 ⁱⁱ —K1—O6	120.74 (12)	C1—C2—C3	109.3 (4)
O4 ⁱⁱⁱ —K1—O6	70.91 (12)	C1—C2—H2A	109.8
O2 ⁱ —K1—O6	125.09 (12)	C3—C2—H2A	109.8
O5 ^v —K1—O6	149.39 (12)	C1—C2—H2B	109.8
O1—K1—O6	67.50 (11)	C3—C2—H2B	109.8
O4 ^{iv} —K1—O3 ⁱⁱⁱ	70.60 (11)	H2A—C2—H2B	108.3
O2 ⁱⁱ —K1—O3 ⁱⁱⁱ	141.05 (12)	O3—C3—C4	112.1 (4)
O4 ⁱⁱⁱ —K1—O3 ⁱⁱⁱ	55.67 (11)	O3—C3—C2	106.5 (4)
O2 ⁱ —K1—O3 ⁱⁱⁱ	75.66 (11)	C4—C3—C2	107.7 (4)
O5 ^v —K1—O3 ⁱⁱⁱ	139.64 (12)	O3—C3—H3A	110.1
O1—K1—O3 ⁱⁱⁱ	114.59 (11)	С4—С3—Н3А	110.1
O6—K1—O3 ⁱⁱⁱ	50.32 (11)	С2—С3—НЗА	110.1
C1—O1—K1	121.6 (3)	O4—C4—O5	125.6 (5)
C1—O2—K1 ^{vi}	135.4 (3)	O4—C4—C3	121.9 (5)
C1—O2—K1 ^{vii}	125.8 (3)	O5—C4—C3	112.4 (4)
O4 ^{iv} —K1—O1—C1	127.0 (4)	O1—C1—C2—C3	-119.5 (5)
O2 ⁱⁱ —K1—O1—C1	-76.0 (4)	K1 ^{viii} —O3—C3—C4	-21.2 (5)
O4 ⁱⁱⁱ —K1—O1—C1	4.9 (4)	K1 ^{viii} —O3—C3—C2	96.4 (4)
O2 ⁱ —K1—O1—C1	171.0 (3)	C1—C2—C3—O3	57.7 (5)
O5 ^v —K1—O1—C1	-146.7 (4)	C1—C2—C3—C4	178.1 (4)
O6—K1—O1—C1	50.5 (4)	K1 ^{ix} —O4—C4—O5	12.0 (8)
O3 ⁱⁱⁱ —K1—O1—C1	68.7 (4)	K1 ^{viii} —O4—C4—O5	-179.5 (3)
K1 ^{viii} —K1—O1—C1	-33.2 (4)	K1 ^{ix} —O4—C4—C3	-170.3 (3)
K1 ^{vi} —O2—C1—O1	-3.5 (8)	K1 ^{viii} —O4—C4—C3	-1.8 (7)
K1 ^{vii} —O2—C1—O1	-147.1 (4)	K1 ^x —O5—C4—O4	-126.8 (5)
K1 ^{vi} —O2—C1—C2	177.4 (3)	K1 ^x —O5—C4—C3	55.3 (6)
K1 ^{vii} —O2—C1—C2	33.8 (6)	O3—C3—C4—O4	17.0 (7)
K1—O1—C1—O2	-112.4 (5)	C2—C3—C4—O4	-99.9 (6)
K1—O1—C1—C2	66.7 (5)	O3—C3—C4—O5	-165.0 (4)
O2-C1-C2-C3	59.7 (6)	C2—C3—C4—O5	78.1 (5)

Symmetry codes: (i) *x*-1/2, *y*-1/2, *z*; (ii) *x*-1/2, -*y*+3/2, *z*-1/2; (iii) *x*, -*y*+1, *z*+1/2; (iv) *x*, *y*, *z*+1; (v) *x*-1/2, -*y*+3/2, *z*+1/2; (vi) *x*+1/2, -*y*+3/2, *z*+1/2; (vii) *x*+1/2, *y*+1/2, *z*; (viii) *x*, -*y*+1, *z*-1/2; (ix) *x*, *y*, *z*-1; (x) *x*+1/2, -*y*+3/2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3···O6 ^{viii}	0.82	2.13	2.607 (5)	117
O5—H5···O1 ^{ix}	0.82	1.70	2.491 (5)	160
O6—H61…O1 ^{vi}	0.82	2.34	2.831 (6)	119
O6—H62···O3	0.82	2.27	2.815 (6)	124
Symmetry codes: (viii) x , $-y+1$, $z-1/2$; (ix) x , y	v, z-1; (vi) x+1/2, -y-	+3/2, <i>z</i> +1/2.		

